Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37819090

ABSTRACT

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Plasmodium , Antimalarials/pharmacology , Casein Kinase II/antagonists & inhibitors , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/parasitology , Plasmodium/metabolism , Plasmodium falciparum
2.
Commun Biol ; 6(1): 861, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596377

ABSTRACT

The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.


Subject(s)
Actins , Plasmodium falciparum , Actins/genetics , Formins , Plasmodium falciparum/genetics , Cell Division , Cytoskeleton
3.
Front Chem ; 7: 773, 2019.
Article in English | MEDLINE | ID: mdl-31824917

ABSTRACT

Malaria is a tropical infectious disease that affects over 219 million people worldwide. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new antimalarial drugs is a global health priority. Multi-target drug discovery is a promising and innovative strategy for drug discovery and it is currently regarded as one of the best strategies to face drug resistance. Aiming to identify new multi-target antimalarial drug candidates, we developed an integrative computational approach to select multi-kinase inhibitors for Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4) and protein kinase 6 (PK6). For this purpose, we developed and validated shape-based and machine learning models to prioritize compounds for experimental evaluation. Then, we applied the best models for virtual screening of a large commercial database of drug-like molecules. Ten computational hits were experimentally evaluated against asexual blood stages of both sensitive and multi-drug resistant P. falciparum strains. Among them, LabMol-171, LabMol-172, and LabMol-181 showed potent antiplasmodial activity at nanomolar concentrations (EC50 ≤ 700 nM) and selectivity indices >15 folds. In addition, LabMol-171 and LabMol-181 showed good in vitro inhibition of P. berghei ookinete formation and therefore represent promising transmission-blocking scaffolds. Finally, docking studies with protein kinases CDPK1, CDPK4, and PK6 showed structural insights for further hit-to-lead optimization studies.

4.
ACS Omega ; 4(13): 15628-15635, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31572864

ABSTRACT

Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius ("açaí") originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates.

5.
Future Med Chem ; 11(20): 2635-2646, 2019 10.
Article in English | MEDLINE | ID: mdl-31556721

ABSTRACT

Aim: Computer-aided drug design approaches were applied to identify chalcones with antiplasmodial activity. Methodology: The virtual screening was performed as follows: structural standardization of in-house database of chalcones; identification of potential Plasmodium falciparum protein targets for the chalcones; homology modeling of the predicted P. falciparum targets; molecular docking studies; and in vitro experimental validation. Results: Using these models, we prioritized 16 chalcones with potential antiplasmodial activity, for further experimental evaluation. Among them, LabMol-86 and LabMol-87 showed potent in vitro antiplasmodial activity against P. falciparum, while LabMol-63 and LabMol-73 were potent inhibitors of Plasmodium berghei progression into mosquito stages. Conclusion: Our results encourage the exploration of chalcones in hit-to-lead optimization studies for tackling malaria.


Subject(s)
Antimalarials/pharmacology , Chalcones/pharmacology , Computer-Aided Design , Drug Design , Malaria/drug therapy , Antimalarials/therapeutic use , Humans
6.
Eur J Med Chem ; 163: 266-280, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30529545

ABSTRACT

Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) has been clinically validated as a target for antimalarial drug discovery, as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. Here, we have identified new hydroxyazole scaffold-based PfDHODH inhibitors belonging to two different chemical series. The first series was designed by a scaffold hopping strategy that exploits the use of hydroxylated azoles. Within this series, the hydroxythiadiazole 3 was identified as the best selective PfDHODH inhibitor (IC50 12.0 µM). The second series was designed by modulating four different positions of the hydroxypyrazole scaffold. In particular, hydroxypyrazoles 7e and 7f were shown to be active in the low µM range (IC50 2.8 and 5.3 µM, respectively). All three compounds, 3, 7e and 7f showed clear selectivity over human DHODH (IC50 > 200 µM), low cytotoxicity, and retained micromolar activity in P. falciparum-infected erythrocytes. The crystallographic structures of PfDHODH in complex with compounds 3 and 7e proved their binding mode, supplying essential data for future optimization of these scaffolds.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Antimalarials/pharmacology , Azoles/chemistry , Azoles/pharmacology , Binding Sites , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Erythrocytes/parasitology , Humans , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship
7.
BMC Biotechnol ; 18(1): 22, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29642881

ABSTRACT

BACKGROUND: Violacein is a deep violet compound that is produced by a number of bacterial species. It is synthesized from tryptophan by a pathway that involves the sequential action of 5 different enzymes (encoded by genes vioA to vioE). Violacein has antibacterial, antiparasitic, and antiviral activities, and also has the potential of inducing apoptosis in certain cancer cells. RESULTS: Here, we describe the construction of a series of plasmids harboring the complete or partial violacein biosynthesis operon and their use to enable production of violacein and deoxyviolacein in E.coli. We performed in vitro assays to determine the biological activity of these compounds against Plasmodium, Trypanosoma, and mammalian cells. We found that, while deoxyviolacein has a lower activity against parasites than violacein, its toxicity to mammalian cells is insignificant compared to that of violacein. CONCLUSIONS: We constructed E. coli strains capable of producing biologically active violacein and related compounds, and propose that deoxyviolacein might be a useful starting compound for the development of antiparasite drugs.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Indole Alkaloids/pharmacology , Indoles/pharmacology , Spiro Compounds/pharmacology , Trypanocidal Agents/pharmacology , Animals , Antimalarials/isolation & purification , Antimalarials/metabolism , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , COS Cells , Chlorocebus aethiops , Escherichia coli/genetics , Hep G2 Cells , Humans , Indole Alkaloids/isolation & purification , Indole Alkaloids/metabolism , Indoles/isolation & purification , Indoles/metabolism , Metabolic Engineering , Operon , Plasmids/genetics , Plasmodium falciparum/drug effects , Spiro Compounds/isolation & purification , Spiro Compounds/metabolism , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/metabolism , Trypanosoma cruzi/drug effects
8.
J Allergy Clin Immunol ; 141(5): 1844-1853.e2, 2018 05.
Article in English | MEDLINE | ID: mdl-28859974

ABSTRACT

BACKGROUND: Sumoylation is a posttranslational reversible modification of cellular proteins through the conjugation of small ubiquitin-related modifier (SUMO) and comprises an important regulator of protein function. OBJECTIVE: We sought to characterize the molecular mechanism of a novel mutation at the SUMO motif on signal transducer and activator of transcription 1 (STAT1). METHODS: STAT1 sequencing and functional characterization were performed in transfection experiments by using immunoblotting and immunoprecipitation in STAT1-deficient cell lines. Transcriptional response and target gene activation were also investigated in PBMCs. RESULTS: We identified a novel STAT1 mutation (c.2114A>T, p.E705V) within the SUMO motif (702IKTE705) in a patient with disseminated Rhodococcus species infection, Norwegian scabies, chronic mucocutaneous candidiasis, hypothyroidism, and esophageal squamous cell carcinoma. The mutation is located in the tail segment and is predicted to disrupt STAT1 sumoylation. Immunoprecipitation experiments performed in transfected cells confirmed absent STAT1 sumoylation for E705V, whereas it was present in wild-type (WT) STAT1 cells, as well as the loss-of-function mutants L706S and Y701C. Furthermore, stimulation with IFN-γ led to enhanced STAT1 phosphorylation, enhanced transcriptional activity, and target gene expression in the E705V-transfected compared with WT-transfected cells. Computer modeling of WT and mutant STAT1 molecules showed variations in the accessibility of the phosphorylation site Y701, which corresponded to the loss-of-function and gain-of-function variants. CONCLUSION: This is the first report of a mutation in the STAT1 sumoylation motif associated with clinical disease. These data reinforce sumoylation as a key posttranslational regulatory modification of STAT1 and identify a novel mechanism for gain-of-function STAT1 disease in human subjects.


Subject(s)
Gain of Function Mutation/immunology , Mutation/genetics , STAT1 Transcription Factor/genetics , Ubiquitin/genetics , Animals , COS Cells , Candidiasis, Chronic Mucocutaneous/genetics , Cell Line , Chlorocebus aethiops , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression/genetics , Humans , Phosphorylation/genetics , SUMO-1 Protein/genetics , Sumoylation/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...